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Abstract. The well known Maxwell-Garnett equation for the effective diffusion coefficient in
two-phase media (a matrix with spherical inclusions) is modified in order to describe a wide
range of experimental situations. This novel approach correctly treats the partial trapping of
a diffusing particle by an inclusion as well as the consequences of an energy barrier for the
particle penetration into an inclusion.

The problem of calculating transport properties of a composite material has a long history,
dating back to Maxwell-Garnett [1]. Usually a composite material is assumed to consist of
a host phase (matrix) characterized by the diffusion coefficient of a probe particle,D2, and
spherical inclusions (the second phase) characterized by the diffusion coefficientD1, radius
r0 and a fractional volume8. These two diffusion coefficients are expressed through the
hop lengthl and the waiting time between the two successive hopsτ in a very simple form:

Di = l2i

2dτi
i = 1, 2 (1)

whered is space dimension (1, 2, or 3).
A very similar problem arises in the description of other transport coefficients (electrical

and thermal conductivity, dielectric constant, magnetic permeability, elastic moduli, etc) in
two-phase systems [2–7]. Examples of systems for which it is desirable to predict such
properties include porous media, polymer blends, foams, ceramic-metal mixture, etc.

In this paper, we consider cases when the generally accepted relation fails and suggest
its generalization. For simplicity, we treat the effective diffusion coefficient. Let us
briefly reproduce a typical derivation of what is generally known asthe Maxwell-Garnett
formula. Experimentally, the matrix with inclusions is characterized by theeffective diffusion
coefficient, Deff, which is a function ofD1, D2, and8. To determine it, one can use the
electrostatic analogy. Consider a macroscopically homogeneous material with the diffusion
coefficientDeff. Imagine that particle concentrationc has a gradientg (similarly to a
homogeneous electric field) along some axis

ceff(r) = −g · r. (2)

Then we insert into material a spherical inclusion of radiusr0 surrounded by a spherical
shell of a host material (matrix) with radiusr1 and assume that the inclusion does not change
the concentration field outside, i.e. atr > r1. (The radii r1 and r0 define the inclusion’s
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Figure 1. (a) Schematic presentation of the matrix with inclusions in terms of a core-shell
model. (b) The case of different-size inclusions.

volume fraction8 = r3
0

r3
1
, figure 1(a).) (If we can do it for a single inclusion, in the same

manner we can introduce into material any amount of inclusions.) The effective diffusion
coefficientDeff could be determined from the following steady-state equation

1cr,ϑ (r, ϑ) = 0 (3)

in the coordinatesr andϑ , whereϑ is an angle betweenr and the external gradientg. The
appropriate solution of equation (3) reads

c1(r, ϑ) = Ar cosϑ (0< r 6 r0) (4)

c2(r, ϑ) =
(
Br + E

r2

)
cosϑ (r0 < r 6 r1) (5)

ceff(r, ϑ) = −gr cosϑ (r1 < r). (6)

Equations for unknown constantsA, B, E and g arise from the boundary conditions for
particle concentrations and fluxes:

c1(r0, ϑ) = c2(r0, ϑ) (7)

D1
∂c1(r, ϑ)

∂r
|r=r0 = D2

∂c2(r, ϑ)

∂r
|r=r0 (8)
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c2(r1, ϑ) = ceff(r1, ϑ) (9)

D2
∂c2(r, ϑ)

∂r
|r=r1 = Deff

∂ceff(r, ϑ)

∂r
|r=r1. (10)

From equations (4)–(10) we obtain a set of equations

r3
0A− r3

0B − E = 0 (11)

D1r
3
0A−D2r

3
0B + 2D2E = 0 (12)

r3
1B + E + r3

1g = 0 (13)

D2r
3
1B +Deffr

3
1g − 2D2E = 0. (14)

Using this set of equations, one gets the Maxwell-Garnett equation sought for

Deff = D2

[
1+ 3(D1−D2)8

D1+ 2D2− (D1−D2)8

]
. (15)

In general, for an arbitrary space dimension (d = 1, 2 and 3) instead of equation (15) one
obtains

Deff = D2

[
1+ d(D1−D2)8

D1+ (d − 1)D2− (D1−D2)8

]
. (16)

The same is true fora set of spherical inclusions of different radiiri0 if the condition

8 = (ri0)
d

(ri1)
d (d is space dimension) remains to be fulfilled (figure 1(b)). However, the

question, at which volume fractions8 inclusions begin to compete and equation (16)
is no longer valid, remains open and could be solved by a comparison with analytical
theory incorporating many-particle effects (see, e.g. [7]) and/or by means of direct computer
simulations.

We now consider several cases when the generally-accepted Maxwell-Garnett equation
(16) gives incorrect results.

(A) Let us begin with a situation when the inclusion corer0 is totally impenetrable, i.e. a
diffusing particle reflects at ther0. This could be described by the condition∂c2(r,ϑ)

∂r
|r=r0 = 0

(or considering the limiting caseD1
D2
→ 0 in equation (8)). In this situation equation (16)

gives

Deff = D2

[
1− 28

1+8
]

(d = 2) (17)

Deff = D2

[
1− 38

2+8
]

(d = 3). (18)

Such relations are well known in the reaction-rate theory [13]. The same result may be
obtained from equations (4)–(9), insertingc1(r, ϑ) = 0 (as well asA = 0, see the discussion
in [12]).

However, equations (17) and (18) give incorrect8-dependence (see the discussion in
[6].) The correct8-dependence, as we show below, is

Deff = D2

1−8
[

1− 38

2+8
]

(d = 3) (19)

Deff = D2

1−8
[

1− 28

1+8
]

(d = 2). (20)

The reason for this incorrectness lies in the use of relation (9). In fact, concentration of
diffusing particles in the matrix (a shell region,r0 < r < r1) cannot be equal to that in the
effective medium because in the latter all particles are ‘smashed’ through a whole system’s
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volume and thus their averaged concentration is less by a factor of 1− 8. This indicates
that equation (9) should be corrected

c2(r1, ϑ) = k1ceff(r, ϑ) (21)

i.e. in reality there is a kink in concentration on the core (inclusion)-shell (matrix) boundary,
r = r1. The question is, how to get the coefficientk1? We propose to obtain it from the
expression forequilibrium particle concentrations in the three regions: core, shell, and the
effective medium:c1, c2 andceff:

ceff = c18+ c2(1−8). (22)

In the particular case of impenetrable inclusions (c1 = 0) we obtain from equation (22)

ceff = c2(1−8) k1 = 1

1−8. (23)

(B) Another restriction of the use of equation (16) arises from Maxwell’s boundary
condition c1(r0, ϑ) = c2(r0, ϑ). In fact it can be shown that equation (16) is valid in the
case of different diffusion coefficients in the matrix and inclusion,D1 6= D2, only if particle
velocities in the matrix and inclusions coincide,l1

τ1
= l2

τ2
. In a general case it is necessary

to introduce the coefficientk connectingc1 andc2:

c1(r0, ϑ) = kc2(r0, ϑ). (24)

In order to extend the Maxwell-Garnett equation, we use the analogy with results
obtained earlier in the 1D case [10] and equations (21), (24) instead of the original Maxwell’s
equations (7), (9). In doing so, instead of the standard equation (16) we arrive at

Deff = D2k1

[
1+ d(D1k −D2)8

kD1+ (d − 1)D2− (kD1−D2)8

]
. (25)

Now let us define the two coefficientsk and k1 through equilibrium concentrations in
inclusions and the matrix:

k = c1

c2
(26)

and

c2 = k1ceff. (27)

From equation (22) we obtain

k1 = 1

1−8+ c1
c2
8
. (28)

Using equation (28), one gets instead of equation (25) the following relation:

Deff = D2

1−8+ c1
c2
8

[
1+ d(D1

c1
c2
−D2)8

(d − 1)D2+ c1
c2
D1− ( c1

c2
D1−D2)8

]
. (29)

Similarly to the Maxwell-Garnett theory, this equation correctly reproduces both limiting
cases, as8 strives for zero and unity. Equation (29) is central to our paper.

It should be recalled that c1 and c2 are equilibriumaverageconcentrations of diffusing
particles in the two phases—the inclusions and the matrix.

It is convenient to express the ratioc1/c2 entering equation (29) through the kinetic
parameters of inclusions and the matrix. In the equilibrium, steady-state situation fluxes of
particles to and from inclusions are equal:

c1
l1

τ1
= c2

l2

τ2
. (30)
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Figure 2. Different cases of energy barriers between the matrix and inclusions,li , Ei are a hop
length and an activation energy for diffusion in the two phases,i = 1, 2. (a) An inclusion with
the diffusion coefficient in the inclusions smaller than in the matrix; there is no energy barrier
between them. (b) An energy barrierEa for the penetration into inclusion,p2 6 1. (c) Partial
trapping of particles inside inclusions,p1 6 1. The detrapping energy isEt .

Remember that the diffusion coefficientsD1 andD2 are defined by equation (1).
Figure 2 shows several important situations for the potential energy profiles of diffusing

particle modelling; its partial trapping by an inclusion (potential energy well) and the (partial)
reflection from it due to the energy barrier, respectively. To describe these situations, let us
introduce thepenetration probabilitiesp1 from the inclusion to the matrix andp2 from the
matrix to inclusions, respectively. Thus, in the general case one obtains

c1

c2
= l2p2τ1

l1p1τ2
. (31)

In the case of a potential barrier the penetration probability is defined entirely by the
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activation energyEa

p2 = constant· exp

(−Ea
kT

)
. (32)

A similar relation is true for the particle hop from the inclusion with the probabilityp1.
Equations (29), (31) allow us to describe many diffusion-controlled processes in composite
media with trapping and release of mobile particles.

Now let us compare our results with previous theories. In the 1D case equation (29)
reproduces the exact result derived for a periodical inclusion distribution in the Kronig–
Penny model with particle reflections (equation (4) in [10]) which reads in our notations
as

Deff =
[
8

D1k
+ 1−8

D2

]−1

· 1

1−8+8k (33)

wherek = c1/c2.
In its turn, in the 3D case equation (29) withDeff has been obtained in [6] for a regular

(periodic) distribution of inclusions and using irreversible thermodynamics. (The main result
is given in terms ofc1 and c2 without the coeficientk interpretation.) Analytical results
presented in [8] also demonstrate the presence of a distinctive cofactor(1− 8 + c1

c2
8)−1

entering theDeff.
In the case of a complete particle reflection from the inclusions (D1 = 0, c1

c2
= 0)

equation (29) transforms into equations (19) and (20) quoted above. For a small inclusion
volume fractions,8� 1, one arrives at

Deff = D2

[
1− 8

2

]
(d = 3) (34)

Deff = D2[1−8] (d = 2). (35)

Equation (34) was received earlier in [9] whereas equation (35) in [14] uses the effective
medium approximation. The expression (34) was also derived calculating the effective self-
diffusion constant of mobile species in solution [11].

In order to compare equation (29) with computer simulations, we have modelled mono-
dispersive periodic spherical inclusions of the same radiusr0 in 1D and 2D varying the
kinetic parametersd1, l1, τ1, andd2, l2, τ2 for particle diffusion in the matrix and inclusions
in a very wide range of magnitudes thus simulating very different situations mentioned
above [14]. For a periodical distribution of inclusions in the matrix we monitored a particle
diffusion and calculatedDeff by the standard formula

Deff = 〈r
2〉

2dt
(36)

wheret is diffusion time and the mean-square particle displacement

〈r2〉 =
∑N

i=1 r
2
i

N
(37)

was averaged over more thanN = 105 runs. The waiting timeτ was chosen to be sufficient
to satisfy the condition〈r2〉 > L, whereL is the distance between adjacent inclusions. We
have used the first-passage algorithm [7].

There is one particular case whenDeff may be determined exactly for the two-phase
inhomogeneous media in all dimensions:l1 = l2, τ1 6= τ2,D1 6= D2. That is, the waiting
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times in the matrix and inclusions differ but the hopping lengths are equal (figure 2(a)). In
this case afterN walks we get from equation (36)

Deff = 〈r2〉
2d(N1τ1+N2τ2)

. (38)

HereN1 andN2 are numbers of particle walks in the phases 1 and 2, respectively. For
sufficiently largeN (diffusing particle visits inclusions many times) one obtains, obviously

N1 = 8N N2 = (1−8)N. (39)

Substituting equation (39) and〈r2〉 = 2dNl2 into equation (38), we receive results well
known for conductivity in inhomogeneous media [5]

1

Deff
= 1

D1
8+ 1

D2
(1−8). (40)

Note that this equation is often considered to be valid only for 1D but as we have
demonstrated, it could in fact be used in any space dimension ifl1 = l2. (Compare this
equation with equation (33) where energy barriers for particle penetration to/from inclusions
are incorporated.)

The same result also follows immediately from our general theory, equation (29), taking
into account that atl1 = l2

c1

c2
= τ1

τ2
(41)

Figure 3. Comparison of Maxwell-Garnett theory (dotted curve, equation (15)) and our
equation (29) (full curve) with computer simulations (squares) for reflecting inclusions versus
their dimensionless concentration.
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which leads to

Deff = D2

1−8+ τ1
τ2
8
. (42)

Equation (42) coincides with equation (40) just by replacingτ1
τ2

by D2
D1

.
We will present results of detailed analysis of these computer simulations in a separate

paper [14]. To give here an idea of the accuracy of our approach, figure 3 illustrates the
calculations for the effective diffusion coefficient at completely reflecting inclusions at the
2D square lattice (D1

D2
= 0). The conclusion could be drawn that computer simulations

coincide with our theory, equation (29), with the precision of 1% up to inclusion volumes
as large as8 = 0.5. A further discrepancy is due to an approximation in the theory which
simulates inclusions as spheres surrounded by the matrix shells. What should be stressed
here is that the Maxwell-Garnett equation (15) (dotted curve) gives incorrect8 dependence
even at small8 since it neglects differences in particle concentrations in inclusions and in
the matrix.

It should be stressed in conclusion that the modified Maxwell-Garnett equation (29) is
derived in the framework of mean-field theory. A suggested expression for the effective
diffusion coefficient (also valid for other transport coeffcients in inhomogeneous two-
phase media) permits treatment of inhomogeneous systems with very different properties of
spherical inclusions and the host matrix, including a partial reflection of diffusing particles
from inclusions and their trapping inside inclusions.
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